
AbstractIn this paper we propose applying the ideas of declarative debugging to the object-oriented language Java as an alternative to traditional trace debuggers used in imperative languages. The declarative debugger builds a suitable computation tree containing information about method invocations occurred during a wrong computation. The tree is then navigated, asking the user questions in order to compare the intended semantics of each method with its actual behavior until a wrong method is found out. The technique has been implemented in an available prototype. We comment the several new issues that arise when using this debugging technique, traditionally applied to declarative languages, to a completely different paradigm and propose several possible improvements and lines of future work.
Object-Oriented Languages, Declarative Debugging, Theoretical Computer Science, Computer Science(all)
Object-Oriented Languages, Declarative Debugging, Theoretical Computer Science, Computer Science(all)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
