Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Engineering Structur...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Engineering Structures
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Experimental study and design method of shear-dominated composite plate shear walls

Authors: Jia-Ji Wang; Xin Nie; Fan-Min Bu; Mu-Xuan Tao; Jian-Sheng Fan;

Experimental study and design method of shear-dominated composite plate shear walls

Abstract

Abstract Many skyscrapers have used the Reinforced Concrete (RC) filled Composite Plate Shear Walls (CPSW). Based on in-plane shear tests on six shear-critical CPSW specimens and a RC shear wall specimen, the behavior of CPSW systems with stud or tie bar connectors, various connector spacings, and various axial compression ratios were reported. In the test program, the Concrete Filled Steel Tubes (CFSTs) are applied for each specimen as boundary elements to simulate the engineering design of CPSW in skyscrapers. This paper presents the test observations, the ultimate capacity, the lateral stiffness, the ductility and the energy dissipation results. Based on the test results, the CPSW specimens with CFST boundary element failed in shear compression failure and the reference RC shear wall failed in shear tension failure. The weld fracture was generally found at boundary element (CFST) in the descending branch. Compared to the RC shear wall, the shear capacity of the CPSW systems were enhanced by 104–129%. The difference between CPSW systems with stud connectors and those with tie bars was insignificant in terms of ultimate capacity. Subsequently, a new database including 38 test specimens was established from the aforementioned test program and available literatures. The database results indicate the compressive capacity of infilled concrete is the dominating factor influencing the shear capacity, instead of the yield capacity of steel. In addition, a design formula for the in-plane ultimate capacity of shear-critical CPSW systems is proposed. Comparisons demonstrated that the proposed model was consistent and exhibited a reasonable level of consistency.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!