Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Engineering Failure ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Engineering Failure Analysis
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Failure analysis of general stator and uniform wall thickness stator

Authors: Changshuai Shi; Xiaohua Zhu; Yike Chen; Liping Tang;

Failure analysis of general stator and uniform wall thickness stator

Abstract

Abstract Stator lining of positive displacement motor (PDM) is prone to generate thermal fatigue failure because of viscoelastic hysteresis of the rubber material. Based on the thermo-mechanical coupling modeling and rubber material testing, finite element method was used to study the effect of environment temperature and thermo-viscoelastic hysteresis to the lining thermal failure of general stator and uniform wall thickness stator. The results show that the deformation and temperature field of general rubber lining has been less affected by the environment temperature than thermo-viscoelastic hysteresis whose distribution of temperature field appears oval-shaped and the temperature gradient is large. Stator lining's temperature increases with the increasing of motor interference and well depth, and the rubber lining's thermal failure modes observed in practice are consistent with the calculation results. The temperature field distribution of uniform wall thickness rubber lining is relatively uniform, and the highest temperature and temperature rise are less affected by the motor interference and well depth, especially with small motor interference and in the shallow well. Therefore, the uniform wall thickness rubber lining has very obvious advantages in prolonging service life and improving the work performance of PDM.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!