Downloads provided by UsageCounts
handle: 10902/9419
This paper presents a model for the prediction of the apparent fracture toughness of ferritic–pearlitic steels in notched conditions and operating at temperatures corresponding to their ductile-to-brittle transition zone. The model, here named the Notch-Master Curve, is based on the combination of the Master Curve of the material in cracked conditions and the notch corrections provided by the Theory of Critical Distances. In order to validate the model, the fracture resistance results obtained in 168 tests performed on CT specimens (84 for each material) are presented. These tests were carried out, for each material, in specimens with six different notch radii, from 0 mm up to 2.0 mm, and at three different temperatures within their corresponding ductile-to-brittle transition zone. It has been observed that the model provides good predictions of the fracture resistance in notched conditions for the two materials analysed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 131 | |
| downloads | 99 |

Views provided by UsageCounts
Downloads provided by UsageCounts