Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Engineering Applicat...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Engineering Applications of Artificial Intelligence
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

On the design of a novel two-objective harmony search approach for distance- and connectivity-based localization in wireless sensor networks

Authors: Diana Manjarres; Javier Del Ser; Sergio Gil-Lopez; Massimo Vecchio; Itziar Landa-Torres; Sancho Salcedo-Sanz; Roberto López-Valcarce;

On the design of a novel two-objective harmony search approach for distance- and connectivity-based localization in wireless sensor networks

Abstract

In several wireless sensor network applications the availability of accurate nodes' location information is essential to make collected data meaningful. In this context, estimating the positions of all unknown-located nodes of the network based on noisy distance-related measurements (usually referred to as localization) generally embodies a non-convex optimization problem, which is further exacerbated by the fact that the network may not be uniquely localizable, especially when its connectivity degree is not sufficiently high. In order to efficiently tackle this problem, we propose a novel two-objective localization approach based on the combination of the harmony search (HS) algorithm and a local search procedure. Moreover, some connectivity-based geometrical constraints are defined and exploited to limit the areas in which sensor nodes can be located. The proposed method is tested with different network configurations and compared, in terms of normalized localization error and three multi-objective quality indicators, with a state-of-the-art metaheuristic localization scheme based on the Pareto archived evolution strategy (PAES). The results show that the proposed approach achieves considerable accuracies and, in the majority of the scenarios, outperforms PAES.

Country
Italy
Keywords

004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!