
In this paper, fractal image compression using schema genetic algorithm (SGA) is proposed. Utilizing the self-similarity property of a natural image, the partitioned iterated function system (PIFS) will be found to encode an image through genetic algorithm (GA) method. In SGA, the genetic operators are adapted according to the schema theorem in the evolutionary process performed on the range blocks. Such a method can speed up the encoder and also preserve the image quality. Simulations show that the encoding time of our method is over 100 times faster than that of the full search method, while the retrieved image quality is still acceptable. The proposed method is also compared to another GA method proposed by Vences and Rudomin. Simulations also show that our method is superior to their method in both the speedup ratio and retrieved quality. Finally, a comparison of the proposed SGA to the traditional GA is presented to demonstrate that when the schema theorem is embedded, the performance of GA has significant improvement.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
