
arXiv: 1707.03252
Truemper configurations (thetas, pyramids, prisms, and wheels) have played an important role in the study of complex hereditary graph classes (e.g. the class of perfect graphs and the class of even-hole-free graphs), appearing both as excluded configurations, and as configurations around which graphs can be decomposed. In this paper, we study the structure of graphs that contain (as induced subgraphs) no Truemper configurations other than (possibly) universal wheels and twin wheels. We also study several subclasses of this class. We use our structural results to analyze the complexity of the recognition, maximum weight clique, maximum weight stable set, and optimal vertex coloring problems for these classes. Furthermore, we obtain polynomial chi-bounding functions for these classes.
clique, vertex coloring, FOS: Mathematics, Mathematics - Combinatorics, structure, Combinatorics (math.CO), algorithms, stable set
clique, vertex coloring, FOS: Mathematics, Mathematics - Combinatorics, structure, Combinatorics (math.CO), algorithms, stable set
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
