Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Notes in ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Notes in Discrete Mathematics
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterizing –partitionable Cographs

Authors: Raquel de Souza Francisco; Sulamita Klein; Loana Tito Nogueira;

Characterizing –partitionable Cographs

Abstract

Abstract We consider the problem of partitioning a graph into k independent sets and l cliques, known as the ( k , l ) -partition problem, which was introduced by Brandstadt in [A. Bransdstadt, Partitions of graphs into one or two independent sets and cliques, Discrete Mathematics 152 (1996) 47–54], and generalized by Feder et al. in [T. Feder, P. Hell, S. Klein, and R. Motwani, Complexity of graph partition problems, in: Thirty First Annual ACM Symposium on Theory of Computing (1999), Plenum Press, New York, 1999, 464–472] as the M-partition problem. Brandstadt proved that given a graph G, it is NP-complete to decide if G is a ( k , l ) -graph for k ≥ 3 or l ≥ 3 . Since then, a lot of work have been done in order to solve the ( k , l ) -partition problem for many subclasses of perfect graphs. In this work, we consider a subclass of perfect graphs: the cographs, which correspond to graphs without paths with size 4. More precisely, we provide a characterization of cographs that are ( k , l ) -graphs by forbidden configurations, that is, a cograph G is a ( k , l ) -graph if and only if it does not contain any of the forbbiden configurations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
gold