Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Electron ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Electron Spectroscopy and Related Phenomena
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Crystal dissolution kinetics and Gibbs free energy

Authors: Andreas Lüttge;

Crystal dissolution kinetics and Gibbs free energy

Abstract

Abstract The dependence of dissolution rates on the difference of Gibbs free energy is of critical importance for our understanding of crystal dissolution, reactive flow models and their applications to a variety of environmentally related problems. Here, we review experimental data generated with mineral powders and single crystals to develop a better understanding of apparent inconsistencies between otherwise internally consistent data sets. Additional information from direct surface observations and measurements with vertical scanning interferometry (VSI) and atomic force microscopy (AFM) of albite dissolution at 25, 150 and 185 °C may shed new light on this old but unsolved question. Our discussion is based on the importance of etch pit development, its ΔG dependence, and the pits’ role as a source for steps and step movement in the dissolution process. Results indicate that reaction history may be of critical importance in determining the overall reaction mechanism and its rate. Different rates are observed for systems having otherwise identical ΔGr acquired from increasing versus decreasing disequilibrium positions. In this context, we finally discuss the validity of the common application of transition state theory (TST) to elementary and overall reactions governing the dissolution process. In this discussion of crystal dissolution, we contrast TST applications with a stochastic, many-body treatment that has led to the development of a stepwave model. This discussion also focuses on the controversy caused by the rivalry between surface adsorption models and a probabilistic model that seeks to incorporate the full three-dimensional crystal structure.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!