Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physica Medicaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physica Medica
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Physica Medica
Article . 2009
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of phase-contrast X-ray imaging techniques and potential medical applications

Authors: Shu-Ang Zhou; Anders Brahme;

Development of phase-contrast X-ray imaging techniques and potential medical applications

Abstract

A significant improvement over conventional attenuation-based X-ray imaging, which lacks contrast in small objects and soft biological tissues, is obtained by introducing phase-contrast imaging. As recently demonstrated, phase-contrast imaging is characterized by its extraordinary image quality, greatly enhanced contrast, and good soft tissue discrimination with very high spatial resolution down to the micron and even the sub-micron region. The rapid development of compact X-ray sources of high brightness, tuneability, and monochromaticity as well as high-resolution X-ray detectors with high quantum efficiency and improved computational methods is stimulating the development of a new generation of X-ray imaging systems for medical applications. The present paper reviews some intrinsic mechanisms, recent technical developments and potential medical applications of two-, three- and four-dimensional phase-contrast X-ray imaging. Challenging issues in current phase-contrast imaging techniques and key clinical applications are discussed and possible developments of future high-contrast and high spatial and temporal resolution medical X-ray imaging systems are outlined.

Related Organizations
Keywords

Radiography, Interferometry, X-Ray Diffraction, Neoplasms, Angiography, Animals, Humans, Bone and Bones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    227
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
227
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?