
handle: 10261/397728 , 2434/1132351
The production of olive (Olea europea) oil – a boast within Mediterranean agriculture – is periodically threatened by the olive fruit fly (Bactrocera oleae). The limited effectiveness of classical strategies for control of olive fly populations and related damages requires new solutions to support both prevention (e.g., early warning systems) and risk transfer (e.g., index-based insurance products). Biophysical models have been used successfully to reach these goals for a variety of cropping systems, but not to reproduce the olive tree-olive fruit fly multitrophic dynamics in operational contexts. We have developed a new model simulating olive tree (including key abiotic stressors), olive fruit fly (including its predators), and their interactions, specifically targeting on-farm applications. We integrated existing algorithms for each species with newly developed equations to improve the formalization of key biophysical processes. Model behaviour was assessed through sensitivity analysis and its performance evaluated under a wide range of agro-climatic conditions, using data on both olive tree growth and fly infestation. To our knowledge, this is the first time a model including a detailed simulation of the physiology of both species has been tested against observed fly damage (percentage of fruits infected). The good agreement between model outputs and observations (mean absolute error of 0.65 t ha−1, 0.87 t ha−1, and 5.4 % for, olive tree aboveground biomass, fruit dry mass, and percentage of fruits attacked, respectively) ‒ together with the parsimony in terms of model inputs – encourage its use to support olive tree growers in controlling this key pest.
This study has been partly funded by Generali Italia S.p.A.
Peer reviewed
Bactrocera oleae; Crop modelling; Olea europea L; Plant-pest interactions; Population model; Sensitivity analysis, Olea europea L., Bactrocera oleae, Crop modelling, Plant-pest interactions, Population model, Sensitivity analysis
Bactrocera oleae; Crop modelling; Olea europea L; Plant-pest interactions; Population model; Sensitivity analysis, Olea europea L., Bactrocera oleae, Crop modelling, Plant-pest interactions, Population model, Sensitivity analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
