Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Endocrinology and Me...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Endocrinology and Metabolism Clinics of North America
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Calcium Metabolism and Correcting Calcium Deficiencies

Authors: Ronald D, Emkey; Gregory R, Emkey;

Calcium Metabolism and Correcting Calcium Deficiencies

Abstract

Calcium is the most abundant cation in the human body, of which approximately 99% occurs in bone, contributing to its rigidity and strength. Bone also functions as a reservoir of Ca for its role in multiple physiologic and biochemical processes. This article aims to provide a thorough understanding of the absorptive mechanisms and factors affecting these processes to enable one to better appreciate an individual's Ca needs, and to provide a rationale for correcting Ca deficiencies. An overview of Ca requirements and suggested dosing regimens is presented, with discussion of various Ca preparations and potential toxicities of Ca treatment.

Keywords

Male, Bone Development, Nutritional Requirements, TRPV Cation Channels, Bone and Bones, Calcium, Dietary, Fractures, Bone, Enterocytes, Intestinal Absorption, Dietary Supplements, Intestine, Small, Animals, Humans, Osteoporosis, Calcium, Female, Calcium Channels, Vitamin D

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!