
The development of advanced coffee bean classification techniques depends on the availability of high quality datasets. Coffee bean quality is influenced by various factors, including bean size, shape, colour, and defects such as fungal damage, full black, full sour, broken beans, and insect damage. Constructing an accurate and reliable ground truth dataset for coffee bean classification is a challenging and labour intensive process. To address this need, we introduce the Coffee Beans Dataset (CBD) which contains 450 high-resolution images sampled across 9 distinct coffee bean grades A, AA, AAA, AB, C, PB-I, PB-II, BITS and BULK with 50 images per class. These samples were sourced from Wayanad, Kerala, reflecting the region's diverse coffee bean quality .This dataset is specifically designed to support machine learning and deep learning models for coffee bean classification and grading. By providing a comprehensive and diverse dataset, we aim to address key challenges in coffee quality assessment and improvement in classification accuracy. When tested using the EfficientNet-B0 model, the model achieved a high accuracy of 100%, demonstrating its potential to enhance automated coffee bean grading systems. The CBD serves as a valuable resource for researchers and industry professionals, promot-ing innovation in coffee quality monitoring and classification algorithms.
Data Article
Data Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
