
handle: 10044/1/113997
Emergent sensing technologies such as wearable electronic devices and skins, monitors for human-computer interaction, etc., are turning to versatile hydrogel chemistry to facilitate the detection of physical and chemical signals. These technologies require portable, non-invasive sensors able to work autonomously for extended periods of time in different environments. The ability of the sensor to self-generate the energy required for its operation is critical because these sensors often work isolated from a power source in highly mobile scenarios. We aim to inform researchers working in similar and allied areas that could benefit from the technology and help those already working in this field to form a comprehensive picture of the state of the art.
620, 004
620, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
