
THADA has been associated with cold adaptation and diabetes in humans, but the cellular and molecular basis of its function has been unknown. Moraru and colleagues (2017) report in this issue of Developmental Cell that it triggers thermogenesis by uncoupling ATP hydrolysis from calcium transport into the endoplasmic reticulum.
Cold Temperature, Mitochondrial Proteins, 610, Animals, Humans, Thermogenesis, Endoplasmic Reticulum, Ion Channels
Cold Temperature, Mitochondrial Proteins, 610, Animals, Humans, Thermogenesis, Endoplasmic Reticulum, Ion Channels
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
