Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Dental Materialsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Dental Materials
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Dental Materials
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Failure mode of dental restorative materials under Hertzian indentation

Authors: Yan Wang; Brian W. Darvell;

Failure mode of dental restorative materials under Hertzian indentation

Abstract

To explore the application of Hertzian indentation testing to amalgam and GIC; study the failure behavior of the bi-layer structure of each material on a relatively soft substrate; and investigate the effect of thickness.Amalgam (Lojic+, SDI, Bayswater, Australia) and ceramic-reinforced GIC (Advanced Healthcare, Tonbridge, UK) discs, 10 mm diameter, thicknesses ranging from 0.4 to 8.0 mm, were tested resting freely on a substrate (30% glass fibre-reinforced polyamide; E=10GPa, 10 mm diameter and 5 mm thick). Increasing load was applied to the center of the disc by a 20 mm-diameter hard steel ball until fracture occurred. Acoustic emission sensing was used as a supplemental method for crack detection. The load at the first crack was recorded. Fracture surfaces were observed under SEM to identify the crack initiation site and the failure mode.The main failure mode of both materials shifted from bottom-initiated radial cracking to near-contact cone cracking or subsurface plastic deformation as the thickness was increased. There was a wide thickness range for the transition of the failure mode for amalgam. Failure load was proportional to the square of thickness for amalgam, except for deviations at small and very large thickness; for the GIC, it was proportional to the thickness to the power approximately 1.6, except for thin layers.The Hertzian indentation test can be applied to investigate the failure behavior of amalgam and GIC in addition to ceramics, for which purpose it may have value as a routine test. Failure mode changed with specimen thickness. The importance of considering both failure mode and failure load or strength is emphasized.

Related Organizations
Keywords

Glass Ionomer Cements, Hardness, Materials Testing, Dental Restoration Failure, Dental Amalgam

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!