
The description of interindividual variability and the ADME-related sources of such variability (ADME: absorption, distribution, metabolization, excretion) is an essential element in clinical drug development to identify potentially relevant subgroups of non-responders or high-risk patients. The use of physiologically-based pharmacokinetic (PBPK) models supports a mechanistic understanding of the underlying ADME processes related to drug pharmacokinetics. In addition, the integration of Bayesian statistics into PBPK applications has allowed thorough assessment of interindividual variability and uncertainty of the pharmacokinetic behavior of drugs and underlying model parameters. Recent applications of Bayesian-PBPK approaches include subgroup stratification or improvement of the robustness of pharmacokinetic extrapolations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
