Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Discrete Applied Mat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Discrete Applied Mathematics
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://doi.org/10.2139/ssrn.4...
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generating subgraphs in chordal graphs

Authors: Vadim E. Levit; David Tankus;

Generating subgraphs in chordal graphs

Abstract

A graph $G$ is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function $w$ is defined on its vertices. Then $G$ is $w$-well-covered if all maximal independent sets are of the same weight. For every graph $G$, the set of weight functions $w$ such that $G$ is $w$-well-covered is a vector space, denoted $WCW(G)$. Let $B$ be a complete bipartite induced subgraph of $G$ on vertex sets of bipartition $B_{X}$ and $B_{Y}$. Then $B$ is generating if there exists an independent set $S$ such that $S \cup B_{X}$ and $S \cup B_{Y}$ are both maximal independent sets of $G$. In the restricted case that a generating subgraph $B$ is isomorphic to $K_{1,1}$, the unique edge in $B$ is called a relating edge. Generating subgraphs play an important role in finding $WCW(G)$. Deciding whether an input graph $G$ is well-covered is co-NP-complete. Hence, finding $WCW(G)$ is co-NP-hard. Deciding whether an edge is relating is NP-complete. Therefore, deciding whether a subgraph is generating is NP-complete as well. A graph is chordal if every induced cycle is a triangle. It is known that finding $WCW(G)$ can be done polynomially in the restricted case that $G$ is chordal. Thus recognizing well-covered chordal graphs is a polynomial problem. We present a polynomial algorithm for recognizing relating edges and generating subgraphs in chordal graphs.

13 pages, 1 figure. arXiv admin note: text overlap with arXiv:1401.0294

Keywords

FOS: Computer and information sciences, Extremal problems in graph theory, relating edge, Discrete Mathematics (cs.DM), Analysis of algorithms and problem complexity, generating subgraph, G.2.2, maximal independent set, weighted well-covered graph, 05C69 (Primary) 05C85 (Secondary), chordal graph, Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.), Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid