Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 2117/171094
A partition $��=\{S_1,\ldots,S_k\}$ of the vertex set of a connected graph $G$ is called a \emph{resolving partition} of $G$ if for every pair of vertices $u$ and $v$, $d(u,S_j)\neq d(v,S_j)$, for some part $S_j$. The \emph{partition dimension} $��_p(G)$ is the minimum cardinality of a resolving partition of $G$. A resolving partition $��$ is called \emph{resolving dominating} if for every vertex $v$ of $G$, $d(v,S_j)=1$, for some part $S_j$ of $��$. The \emph{dominating partition dimension} $��_p(G)$ is the minimum cardinality of a resolving dominating partition of $G$. In this paper we show, among other results, that $��_p(G) \le ��_p(G) \le ��_p(G)+1$. We also characterize all connected graphs of order $n\ge7$ satisfying any of the following conditions: $��_p(G)= n$, $��_p(G)= n-1$, $��_p(G)= n-2$ and $��_p(G) = n-2$. Finally, we present some tight Nordhaus-Gaddum bounds for both the partition dimension $��_p(G)$ and the dominating partition dimension $��_p(G)$.
22 pages, 9 figures
Àrees temàtiques de la UPC::Matemàtiques i estadística, Teoria de, Grafs, Teoria de, Metric location, Resolving domination, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Classificació AMS::05 Combinatorics::05C Graph theory, Graph theory, Grafs, Resolving partition, Partition dimension, Resolving dominating partition, FOS: Mathematics, Mathematics - Combinatorics, Dominating partition dimension, Combinatorics (math.CO), 05C12, 05C35, 05C69, :05 Combinatorics::05C Graph theory [Classificació AMS]
Àrees temàtiques de la UPC::Matemàtiques i estadística, Teoria de, Grafs, Teoria de, Metric location, Resolving domination, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Classificació AMS::05 Combinatorics::05C Graph theory, Graph theory, Grafs, Resolving partition, Partition dimension, Resolving dominating partition, FOS: Mathematics, Mathematics - Combinatorics, Dominating partition dimension, Combinatorics (math.CO), 05C12, 05C35, 05C69, :05 Combinatorics::05C Graph theory [Classificació AMS]
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 51 | |
| downloads | 105 |

Views provided by UsageCounts
Downloads provided by UsageCounts