
AbstractThe measure and conquer approach has proven to be a powerful tool to analyse exact algorithms for combinatorial problems like Dominating Set and Independent Set. This approach is used in this paper to obtain a faster exact algorithm for Dominating Set. We obtain this algorithm by considering a series of branch and reduce algorithms. This series is the result of an iterative process in which a mathematical analysis of an algorithm in the series with measure and conquer results in a convex or quasiconvex programming problem. The solution, by means of a computer, to this problem not only gives a bound on the running time of the algorithm, but can also give an indication on where to look for a new reduction rule, often giving a new, possibly faster algorithm. As a result, we obtain an O(1.4969n) time and polynomial space algorithm.
Dominating set, Exponential time algorithms, Applied Mathematics, Discrete Mathematics and Combinatorics, Exact algorithms, Computer aided algorithm design, Branch and reduce, Measure and conquer
Dominating set, Exponential time algorithms, Applied Mathematics, Discrete Mathematics and Combinatorics, Exact algorithms, Computer aided algorithm design, Branch and reduce, Measure and conquer
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
