Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computer Vision and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Vision and Image Understanding
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Backtracking: Retrospective multi-target tracking

Authors: W. P. Koppen; Marcel Worring;

Backtracking: Retrospective multi-target tracking

Abstract

We introduce a multi-target tracking algorithm that operates on prerecorded video as typically found in post-incident surveillance camera investigation. Apart from being robust to visual challenges such as occlusion and variation in camera view, our algorithm is also robust to temporal challenges, in particular unknown variation in frame rate. The complication with variation in frame rate is that it invalidates motion estimation. As such, tracking algorithms based on motion models will show decreased performance. On the other hand, appearance based detection in individual frames suffers from a plethora of false detections. Our tracking algorithm, albeit relying on appearance based detection, deals robustly with the caveats of both approaches. The solution rests on the fact that for prerecorded video we can make fully informed choices; not only based on preceding, but also based on following frames. We start off from an appearance based object detection algorithm able to detect in each frame all target objects. From this we build a graph structure. The detections form the graph’s nodes and the vertices are formed by connecting each detection in a frame to all detections in the following frame. Thus, each path through the graph shows some particular selection of successive detections. Tracking is then reformulated as a heuristic search for optimal paths, where optimal means to find all detections belonging to a single object and excluding any other detection. We show that this approach, without an explicit motion model, is robust to both the visual and temporal challenges.

Countries
Netherlands, United Kingdom
Related Organizations
Keywords

004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!