Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2023 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plant virology

Authors: César A D, Xavier; Anna E, Whitfield;
Abstract

The first infectious agent to bear the name 'virus' was described in 1898: a plant pathogen called tobacco mosaic virus that infects a wide range of plants and results in a yellow mosaic of the leaves. Since then, the study of plant viruses has facilitated new discoveries in both virology and plant biology. Traditionally, research has focused on viruses that cause severe disease in plants used for human and animal food or recreation. However, closer inspection of the plant-associated virome is now revealing interactions that range from pathogenic to symbiotic. Although they are often studied in isolation, plant viruses are usually found as part of a broader community that includes other plant-associated microbes and pests. For example, biological vectors of plant viruses (arthropods, nematodes, fungi, and protists) can facilitate the transmission of viruses between plants in an intricate interaction. To enhance transmission, viruses can induce the plant to 'lure' the vector by modulating plant chemistry and defenses. Once delivered to a new host, viruses are dependent on specific proteins that modify the structural components of the cell to enable transport of viral proteins and genomic material. Links between antiviral plant defenses and key steps in virus movement and transmission are being revealed. Upon infection, a suite of antiviral responses is triggered, including the expression of resistance genes - a favored strategy to control plant viruses. In this primer, we discuss these features and more, highlighting the exciting world of plant-virus interactions.

Keywords

Genetic Variation, Plant Physiological Phenomena, Plant Diseases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!