
Many animals rely on vision to detect objects such as conspecifics, predators, and prey. Hypercomplex cells found in feline cortex and small target motion detectors found in dragonfly and hoverfly optic lobes demonstrate robust tuning for small objects, with weak or no response to larger objects or movement of the visual panorama [1-3]. However, the relationship among anatomical, molecular, and functional properties of object detection circuitry is not understood. Here we characterize a specialized object detector in Drosophila, the lobula columnar neuron LC11 [4]. By imaging calcium dynamics with two-photon excitation microscopy, we show that LC11 responds to the omni-directional movement of a small object darker than the background, with little or no responses to static flicker, vertically elongated bars, or panoramic gratings. LC11 dendrites innervate multiple layers of the lobula, and each dendrite spans enough columns to sample 75° of visual space, yet the area that evokes calcium responses is only 20° wide and shows robust responses to a 2.2° object spanning less than half of one facet of the compound eye. The dendrites of neighboring LC11s encode object motion retinotopically, but the axon terminals fuse into a glomerular structure in the central brain where retinotopy is lost. Blocking inhibitory ionic currents abolishes small object sensitivity and facilitates responses to elongated bars and gratings. Our results reveal high-acuity object motion detection in the Drosophila optic lobe.
Neurons, Microscopy, Psychology and Cognitive Sciences, Neurosciences, Motion Perception, Dendrites, Biological Sciences, Medical and Health Sciences, Fluorescence, object perception, Drosophila melanogaster, Microscopy, Fluorescence, Multiphoton, visual object, Neurological, motion detection, Animals, Calcium, Female, Visual Pathways, Eye Disease and Disorders of Vision, Multiphoton, Developmental Biology
Neurons, Microscopy, Psychology and Cognitive Sciences, Neurosciences, Motion Perception, Dendrites, Biological Sciences, Medical and Health Sciences, Fluorescence, object perception, Drosophila melanogaster, Microscopy, Fluorescence, Multiphoton, visual object, Neurological, motion detection, Animals, Calcium, Female, Visual Pathways, Eye Disease and Disorders of Vision, Multiphoton, Developmental Biology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 107 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
