Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2005
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dopaminergic Modulation of Arousal in Drosophila

Authors: Andretic, Rozi; van Swinderen, Bruno; Greenspan, Ralph J.;

Dopaminergic Modulation of Arousal in Drosophila

Abstract

Arousal levels in the brain set thresholds for behavior, from simple to complex. The mechanistic underpinnings of the various phenomena comprising arousal, however, are still poorly understood. Drosophila behaviors have been studied that span different levels of arousal, from sleep to visual perception to psychostimulant responses.We have investigated neurobiological mechanisms of arousal in the Drosophila brain by a combined behavioral, genetic, pharmacological, and electrophysiological approach. Administration of methamphetamine (METH) suppresses sleep and promotes active wakefulness, whereas an inhibitor of dopamine synthesis promotes sleep. METH affects courtship behavior by increasing sexual arousal while decreasing successful sexual performance. Electrophysiological recordings from the medial protocerebrum of wild-type flies showed that METH ingestion has rapid and detrimental effects on a brain response associated with perception of visual stimuli. Recordings in genetically manipulated animals show that dopaminergic transmission is required for these responses and that visual-processing deficits caused by attenuated dopaminergic transmission can be rescued by METH.We show that changes in dopamine levels differentially affect arousal for behaviors of varying complexity. Complex behaviors, such as visual perception, degenerate when dopamine levels are either too high or too low, in accordance with the inverted-U hypothesis of dopamine action in the mammalian brain. Simpler behaviors, such as sleep and locomotion, show graded responses that follow changes in dopamine level.

Countries
Croatia, Australia
Keywords

Dynamins, VISUAL-ATTENTION, LONG-TERM, Dopamine, BRAIN ACTIVITY, D-AMPHETAMINE ; SELECTIVE ATTENTION ; INDUCED WAKEFULNESS ; SLEEP-DEPRIVATION ; PREFRONTAL CORTEX ; VISUAL-ATTENTION ; GENE-EXPRESSION ; LOCUS-COERULEUS ; BRAIN ACTIVITY ; LONG-TERM, PREFRONTAL CORTEX, SELECTIVE ATTENTION, Methamphetamine, Animals, Genetically Modified, Sexual Behavior, Animal, dynamin, Animals, Drosophila Proteins, Drosophila protein, methamphetamine, GENE-EXPRESSION, aromatic levo amino acid decarboxylase, Agricultural and Biological Sciences(all), Dose-Response Relationship, Drug, Biochemistry, Genetics and Molecular Biology(all), Brain, D-AMPHETAMINE, INDUCED WAKEFULNESS, Electrophysiology, LOCUS-COERULEUS, Mutation, Dopa Decarboxylase, Visual Perception, Drosophila, dopamine, 1109 Neurosciences, Arousal, Sleep, shibire protein, SLEEP-DEPRIVATION

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    328
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
328
Top 1%
Top 1%
Top 1%
hybrid