
Clusters of genes acquired by lateral gene transfer in microbial genomes, are broadly referred to as genomic islands (GIs). GIs often carry genes important for genome evolution and adaptation to niches, such as genes involved in pathogenesis and antibiotic resistance. Therefore, GI prediction has gradually become an important part of microbial genome analysis. Despite inherent difficulties in identifying GIs, many computational methods have been developed and show good performance. In this mini-review, we first summarize the general challenges in predicting GIs. Then we group existing GI detection methods by their input, briefly describe representative methods in each group, and discuss their advantages as well as limitations. Finally, we look into the potential improvements for better GI prediction.
Pathogenicity islands, Comparative genomics, Sequence composition, Genome segmentation, Outlier detection, Short Survey, TP248.13-248.65, Biotechnology
Pathogenicity islands, Comparative genomics, Sequence composition, Genome segmentation, Outlier detection, Short Survey, TP248.13-248.65, Biotechnology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
