Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cryobiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cryobiology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cryobiology
Article . 2009
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Peculiarities of state diagrams of aqueous solutions of cryoprotective agents

Authors: Alexander I, Osetsky;

Peculiarities of state diagrams of aqueous solutions of cryoprotective agents

Abstract

The phase transitions in aqueous solutions of glycerol and PEO-1500 within the temperature range of +30 to -150 degrees C have been studied using the methods of thermoplastic analysis and volumetric scanning tensodilatometry. We present the revealed phenomenon of cluster cyrystallization of these solutions as well as principles of describing this phenomenon using state diagrams, containing the intervals of concentration corresponding to the existence of amorphous and cryocolloid fractions. We note that for the cryocolloid fraction, a low temperature association of molecules of cryoprotective agents leads the formation of ice nanocrystals either close to or directly inside the aggregations. These fractions exist in cooled cryoprotective solutions near the vitrification temperatures of the liquid phase and may contribute to the initiation of damaging events in cryopreserved biological systems. Our data may be helpful in explaining the peculiarities observed during crystallization of cryoprotective solutions and may further contribute to a broader understanding of the principles of protection and protocol optimization of biological materials at temperatures approaching vitrification.

Related Organizations
Keywords

Glycerol, Solutions, Cryoprotective Agents, Chemical Phenomena, Nanoparticles, Crystallization, Phase Transition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!