Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Critical Reviews in ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Critical Reviews in Oncology/Hematology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The DNA damaging revolution

Authors: Bulent Cetin; Chiara A. Wabl; Ozge Gumusay;

The DNA damaging revolution

Abstract

Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that plays a critical role in the repair of single-strand DNA damage via the base excision repair pathway. PARP inhibitors have substantial single-agent antitumor activity by inducing synthetic lethality. They have also emerged as promising anticancer targeted therapies, especially in tumors harboring deleterious germline or somatic breast cancer susceptibility gene (BRCA) mutations. PARP inhibition produces single-strand DNA breaks, which may be repaired by homologous recombination, a process partially dependent on BRCA1 and BRCA2. The PARP inhibitors olaparib, veliparib, talazoparib, niraparib, and rucaparib have predominantly been studied in patients with breast or ovarian cancers associated with deleterious germline mutations in BRCA1 and BRCA2. Ongoing clinical trials are evaluating the role of PARP inhibitors alone and in combination with other therapies, including selective inhibitors against key targets involved in the DNA damage response. In this review we summarize the use of PARP inhibitors in various tumor types, as well as possible approaches for overcoming resistance to PARP inhibitors.

Keywords

Ovarian Neoplasms, DNA Repair, BRCA1 Protein, Genes, BRCA2, Humans, Female, DNA, Poly(ADP-ribose) Polymerase Inhibitors, Poly(ADP-ribose) Polymerases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!