
Abstract Atom probe tomography has without any doubt become a routine technique to analyze the detailed three-dimensional chemistry of materials at the nanoscale. This article provides a general overview of what APT can reliably do today and what it might do tomorrow in terms of material characterization. The recent achievements in the analysis of new materials and new materials structures are first presented allowing some speculation on future possible developments. The ability to provide unique quantitative chemical information to link processing to device performance is then reviewed in the context of the recent nanowire and gate structures analyses. Finally examples of the systematic use of atom probe tomography to explore material behaviors and kinetic processes controlling microstructure evolution are presented.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
