Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Operatio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Operations Research
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparative study of two hybrid grouping evolutionary techniques for the capacitated P-median problem

Authors: Itziar Landa-Torres; J. Del Ser; Sergio Gil-Lopez; Jose A. Portilla-Figueras; O. Alonso-Garrido; Sancho Salcedo-Sanz;

A comparative study of two hybrid grouping evolutionary techniques for the capacitated P-median problem

Abstract

This paper addresses the application of two different grouping-based algorithms to the so-called capacitated P-median problem (CPMP). The CPMP is an NP-complete problem, well-known in the operations research field, arising from a wide spectrum of applications in diverse fields such as telecommunications, manufacturing and industrial engineering. The CPMP problem has been previously tackled by using distinct algorithmic approaches, among which we focus on evolutionary computation techniques. The work presented herein elaborates on these evolutionary computation algorithms when applied to the CPMP, by evaluating the performance of a novel grouping genetic algorithm (GGA) and a novel grouping harmony search approach (GHS). Both GGA and GHS are hybridized with a specially tailored local search procedure for enhancing the overall performance of the algorithm in the particular CPMP scenario under consideration. This manuscript delves into the main characteristics of the proposed GGA and GHS schemes by thoroughly describing the grouping encoding procedure, the evolutionary operators (GGA) and the improvisation process (GHS), the aforementioned local search procedure and a repairing technique that accounts for the feasibility of the solutions iteratively provided by both algorithms. The performance of the proposed algorithms is compared with that of several existing evolutionary-based algorithms for CPMP instances of varying size, based on which it is concluded that GGA and GHS dominate any other approaches published so far in the literature, specially when the size of the CPMP increases. The experimental section of the paper tries to evaluate the goodness of the grouping encoding, and also the differences in behavior between the GGA and GHS due to the meta-heuristic algorithm used.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?