
pmid: 22445283
Oxidized phospholipids (oxPLs) that can be generated either enzymatically or non-enzymatically are fast becoming recognized as important signaling mediators of the immune system. Hundreds of structures exist, but only a small fraction have been studied in detail. Their known activities include regulation of adhesion molecule expression, pro-coagulant activity and inhibition of Toll-like receptor signaling, and several have been detected in models of human and animal disease. In this review, the most studied structures of oxPLs will be summarized, along with descriptions of their known biological actions. Subsequently, the focus will be on the more recently described forms generated acutely by lipoxygenases (LOX) in human and murine immune cells.
Blood Platelets, Neutrophils, Macrophages, Animals, Humans, Oxidation-Reduction, Monocytes, Phospholipids, Signal Transduction
Blood Platelets, Neutrophils, Macrophages, Animals, Humans, Oxidation-Reduction, Monocytes, Phospholipids, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
