
pmid: 20167469
Single cells represent the minimal functional unit of life. A major goal of biology is to understand the mechanisms operating in this minimal unit. Nowadays, analysis of the single cell can be performed at unprecedented resolution using new lab-on-a-chip devices and advanced analytical methods. While cell handling and cultivation devices can be classified into finite volume reactors and flow systems, the analytical approaches differ in respect to invasive (i.e. chemical) and noninvasive (i.e. biological/living cell) analysis. Using these new and exciting technologies cell-to-cell differences, originating from regulatory circuits and distinct microenvironments, can now be explored. For example, it could be shown that the rates of transcription and translation are stochastic. Chemical and biological single cell analyses provide an unprecedented access to the understanding of cell-to-cell differences and basic biological concepts.
Biopolymers, Bioreactors, Flow Injection Analysis, Cell Culture Techniques, Animals, Humans, Microfluidic Analytical Techniques, Cell Physiological Phenomena
Biopolymers, Bioreactors, Flow Injection Analysis, Cell Culture Techniques, Animals, Humans, Microfluidic Analytical Techniques, Cell Physiological Phenomena
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 172 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
