
pmid: 16413768
The bacterial periplasmic-binding protein (PBP) superfamily members, in particular the maltose-binding protein, have been used extensively to prototype a variety of biosensing platforms. Although quite diverse at the primary sequence level, this protein superfamily retains the same basic two-domain structure, and upon binding a recognized ligand almost all PBPs undergo a conformational change to a closed structure. This process forms the basis for most, but not all, PBP-based biosensor signal transduction. Many direct detection or reagentless sensing modalities have been utilized with maltose-binding protein for both in vitro and in vivo detection of target compounds. Signal transduction modalities developed to date include direct fluorescence, electrochemical detection, fluorescence resonance energy transfer (FRET)-based detection, surface-tethered FRET sensing, hybrid quantum dot FRET sensing, and enzymatic detection, each of which have different benefits, potential applications and limitations.
Protein Conformation, Periplasmic Binding Proteins, Quantum Dots, Electrochemistry, Fluorescence Resonance Energy Transfer, Biosensing Techniques, Carrier Proteins, Fluorescence, Maltose-Binding Proteins, Fluorescent Dyes
Protein Conformation, Periplasmic Binding Proteins, Quantum Dots, Electrochemistry, Fluorescence Resonance Energy Transfer, Biosensing Techniques, Carrier Proteins, Fluorescence, Maltose-Binding Proteins, Fluorescent Dyes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 99 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
