
pmid: 16171989
Advances in the field of genomics and 'metagenomics' have dramatically revised our view of microbial biodiversity and its potential for biotechnological applications. Considering the estimation that >99% of microorganisms in most environments are not amenable to culturing, very little is known about their genomes, genes and encoded enzymatic activities. The isolation, archiving and analysis of environmental DNA (or so-called 'metagenomes') has enabled us to mine microbial diversity, allowing us to access their genomes, identify protein coding sequences and even to reconstruct biochemical pathways, providing insights into the properties and functions of these organisms. The generation and analysis of (meta)genomic libraries is thus a powerful approach to harvest and archive environmental genetic resources. It will enable us to identify which organisms are present, what they do, and how their genetic information can be beneficial to mankind.
Genomic Library, Environmental Microbiology, DNA Shuffling, Directed Molecular Evolution, Catalysis, Genome, Bacterial, Biotechnology, Enzymes
Genomic Library, Environmental Microbiology, DNA Shuffling, Directed Molecular Evolution, Catalysis, Genome, Bacterial, Biotechnology, Enzymes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 136 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
