Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Control Engineering ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Control Engineering Practice
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2025
License: CC BY
https://doi.org/10.2139/ssrn.5...
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Model predictive control of high moisture extrusion cooking

Authors: Adrian Ticǎ; Vivek S. Pinnamaraju; Eric Stirnemann; Erich J. Windhab;

Model predictive control of high moisture extrusion cooking

Abstract

High Moisture Extrusion Cooking (HMEC) has become a promising technology for producing plant-based meat alternatives. By using HMEC, food manufacturers can create meat-like textures from plant proteins, offering a sustainable solution with reduced carbon footprint to consumers. However, at the current stage of development, the automation level in HMEC is insufficient to ensure operational autonomy, reliability, and product quality expected by industry demands. This paper presents a predictive control framework designed to transform experience-based handled HMEC into a more reliable process operation, improving its production performance and facilitating industrial up-scaling. The proposed control structure is hierarchical, comprising two layers. At the upper layer, a model predictive control (MPC) algorithm determines the optimal set-points for the controllers at the lower layer. The predictive framework is built on the existing HMEC control architecture and can be further extended to achieve fully optimized production. Leveraging linear dynamic models, the approach mainly focuses on the protein melt control aiming to enhance production performance by minimizing the tracking error of process quantities correlated to product quality. The practical feasibility of the designed control solution has been proven on a pilot-scale extruder. Validation results have shown improved operational stability and reproducibility, while effectively tracking set-points for consistent meat-like fibrous structure formation and desired textural characteristics.

Control Engineering Practice, 162

ISSN:0967-0661

ISSN:1873-6939

Related Organizations
Keywords

Optimization, Plant-based processing, High moisture extrusion cooking, Model predictive control, Process modeling, System identification, High moisture extrusion cooking; Plant-based processing; Process modeling; System identification; Model predictive control; Optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid