
Humans are able to continually learn new information and acquire skills that meet the demands of an ever-changing environment. Yet, this new learning does not necessarily occur at the expense of old memories. The specialised biological mechanisms that permit continual learning in humans and other mammals are not fully understood. Here I explore the possibility that neural inhibition plays an important role. I present recent findings from studies in humans that suggest inhibition regulates the stability of neural networks to gate cortical plasticity and memory retrieval. These studies use non-invasive methods to obtain an indirect measure of neural inhibition and corroborate comparable findings in animals. Together these studies reveal a model whereby neural inhibition protects memories from interference to permit continual learning. Neural inhibition may, therefore, play a critical role in the computations that underlie higher-order cognition and adaptive behaviour.
Inhibition, Psychological, Memory, Animals, Humans, Learning, Neural Inhibition, Neural Networks, Computer, Article
Inhibition, Psychological, Memory, Animals, Humans, Learning, Neural Inhibition, Neural Networks, Computer, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
