Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Neurobiology
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

Axon guidance and injury — lessons from Wnts and Wnt signaling

Authors: Onishi, Keisuke; Hollis, Edmund; Zou, Yimin;

Axon guidance and injury — lessons from Wnts and Wnt signaling

Abstract

Many studies in the past decade have revealed the role and mechanisms of Wnt signaling in axon guidance during development and the reinduction of Wnt signaling in adult central nervous system axons upon traumatic injury, which has profound influences on axon regeneration. With 19 Wnts and 14 known receptors (10 Frizzleds (Fzds), Ryk, Ror1/2 and PTK7), the Wnt family signaling proteins contribute significantly to the wiring specificity of the complex brain and spinal cord circuitry. Subsequent investigation into the signaling mechanisms showed that conserved cell polarity pathways mediate growth cone steering. These cell polarity pathways may unveil general principles of growth cone guidance. The reappeared Wnt signaling system after spinal cord injury limits the regrowth of both descending and ascending motor and sensory axons. Therefore, the knowledge of Wnt signaling mechanisms learned from axon development can be applied to axon repair in adulthood.

Country
United States
Keywords

Physical Injury - Accidents and Adverse Effects, Biomedical and Clinical Sciences, 1.1 Normal biological development and functioning, Neurosciences, Cell Polarity, Neurodegenerative, Regenerative Medicine, Axons, Wnt Proteins, Underpinning research, Neurological, Animals, Cognitive Sciences, Spinal Cord Injury, Traumatic Head and Spine Injury, Spinal Cord Injuries, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
Green
bronze