
Central to macro-connectomics and much of systems neuroscience is the idea that we can summarise macroscopic brain connectivity using a network of 'nodes' and 'edges'--functionally distinct brain regions and the connections between them. This is an approach that allows a deep understanding of brain dynamics and how they relate to brain circuitry. This approach, however, ignores key features of anatomical connections, such as spatial arrangement and topographic mappings. In this article, we suggest an alternative to this paradigm. We propose that connection topographies can inform us about brain networks in ways that are complementary to the concepts of 'nodes' and 'edges'. We also show that current neuroimaging technology is capable of revealing details of connection topographies in vivo. These advances, we hope, will allow us to explore brain connectivity in novel ways in the immediate future.
Feedback, Physiological, Brain Mapping, Models, Neurological, Neural Pathways, Brain, Humans, Computer Simulation, Nerve Net
Feedback, Physiological, Brain Mapping, Models, Neurological, Neural Pathways, Brain, Humans, Computer Simulation, Nerve Net
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 95 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
