
Research on the functional anatomy of visual cortical circuits has recently zoomed in from the macroscopic level to the microscopic. High-resolution functional imaging has revealed that the functional architecture of orientation maps in higher mammals is built with single-cell precision. By contrast, orientation selectivity in rodents is dispersed on visual cortex in a salt-and-pepper fashion, despite highly tuned visual responses. Recent studies of synaptic physiology indicate that there are disjoint subnetworks of interconnected cells in the rodent visual cortex. These intermingled subnetworks, described in vitro, may relate to the intermingled ensembles of cells tuned to different orientations, described in vivo. This hypothesis may soon be tested with new anatomic techniques that promise to reveal the detailed wiring diagram of cortical circuits.
Neurons, Brain Mapping, Nonlinear Dynamics, Models, Neurological, Animals, Humans, Nerve Net, Visual Cortex
Neurons, Brain Mapping, Nonlinear Dynamics, Models, Neurological, Animals, Humans, Nerve Net, Visual Cortex
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 112 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
