Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Composite Structuresarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Composite Structures
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Conference object . 2005
versions View all 3 versions
addClaim

Degradation investigation in a postbuckling composite stiffened fuselage panel

Authors: Orifici, Adrian; Thomson, R.S.; Degenhardt, Richard; Kling, Alexander; Rohwer, Klaus; Bayandor, J.;

Degradation investigation in a postbuckling composite stiffened fuselage panel

Abstract

COCOMAT is a four-year project under the European Commission 6th Framework Programme that aims to exploit the large strength reserves of composite structures through a more accurate prediction of collapse. Accordingly, one of the COCOMAT work packages involves the design of test panels with a focus on investigating the progression of composite damage mechanisms. This paper presents the collaborative results of some of the partners for this task. Different design alternatives were investigated for fuselage-representative test panels. Non-linear structural analyses were performed using MSC.Nastran and ABAQUS/Standard. Numerical predictions were also made applying a stress-based adhesive degradation model, previously implemented into a material user subroutine for ABAQUS/Standard. Following this, a fracture mechanics analysis using MSC.Nastran was performed along all interfaces between the skin and stiffeners, to examine the stiffener disbonding behaviour of each design. On the basis of the structural and fracture mechanics analyses, a design was selected as being the most suitable for the experimental investigation within COCOMAT. Though the COCOMAT panels have yet to be manufactured and tested, experimental data on the structural performance and damage mechanisms were available from a separate project for a panel identical to the selected design. This data was compared to the structural, degradation and fracture mechanics predictions made using non-linear finite element solutions, and the application of the design within the COCOMAT project was discussed.

Country
Germany
Keywords

skin-stiffener disbonding, postbuckling stiffened panels, Buckling, Postbuckling, Stiffened panels, Skin–stiffener disbonding, COCOMAT, Composite

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
bronze