Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computers & Fluids
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2020 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2020 . Peer-reviewed
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Fluids
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-dissipation finite element strategy for low Mach number reacting flows

Authors: Both, Ambrus; Lehmkuhl Barba, Oriol; Mira Martínez, Daniel; Ortega, Marc;

Low-dissipation finite element strategy for low Mach number reacting flows

Abstract

The present paper extends the conservative finite element convective scheme proposed by Charnyi et al.(Journal of Computational Physics 337, 2017, 289–308) originally formulated for incompressible flows to the low Mach regime. Similar to Lehmkuhl et al.(Journal of Computational Physics 390, 2019, 51–65) stabilisation is only introduced for the continuity equation by means of a non-incremental fractional-step method, modified in order to account for variable density flows. The final scheme preserves momentum and angular momentum for variable density flows. The error of kinetic energy conservation is of order O(δt hk+1 ), thus dissipation is limited. Standard stabilised finite elements are used for the scalars. Time integration is carried out by means of an explicit third order Runge-Kutta scheme for all equations. The proposed strategy is tested on a set of relevant cases with available reference data using large-eddy simulations. First, an anisothermal turbulent channel flow is assessed. Later, a technically premixed turbulent flame in a swirl-stabilized configuration is considered. And finally, a turbulent jet diffusion flame in a low-velocity co-flow has been studied. In all cases the performance of the presented low Mach formulation is fairly good, showing better accuracy than skew-symmetric like strategies. This project has received funding from the Spanish Ministry of Economy and Competitiveness in the frame of the CHEST project (TRA2017-89139-C2-2-R) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 713673. Ambrus Both has received financial support from “la Caixa” Fundation (ID 100010434). The fellowship grant code is LCF/BQ/IN17/11620032. Conflict of Interest: Daniel Mira acknowledges the Juan de la Cierva personal grant IJCI-2015-26686. Peer Reviewed

Country
Spain
Keywords

Elements finits, Finite element method, Kinematics, Reaction effects in flows, Mètode dels, Elements finits, Mètode dels, Combustion, Cinemàtica, :Aeronàutica i espai::Astronàutica::Enginyeria aeroespacial [Àrees temàtiques de la UPC], Low dissipation schemes, Combustió, large-eddy simulation, Finite element, Large-eddy simulation, finite element, low Mach, Àrees temàtiques de la UPC::Aeronàutica i espai::Astronàutica::Enginyeria aeroespacial, Low Mach, low dissipation schemes, Finite element methods applied to problems in fluid mechanics, combustion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 48
    download downloads 103
  • 48
    views
    103
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
22
Top 10%
Top 10%
Top 10%
48
103
Green
hybrid