Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers in Biology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers in Biology and Medicine
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of SNP-SNP interaction for chronic dialysis patients

Authors: Li-Yeh Chuang; Zi-Jie Weng; Cheng-San Yang; Cheng-Hong Yang;

Identification of SNP-SNP interaction for chronic dialysis patients

Abstract

Analyses of interactions between single nucleotide polymorphisms (SNPs) have reported significant associations between mitochondrial displacement loops (D-loops) and chronic dialysis diseases. However, the method used to detect potential SNP-SNP interaction still requires improvement. This study proposes an effective algorithm named dynamic center particle swarm optimization k-nearest neighbors (DCPSO-KNN) to detect the SNP-SNP interaction. DCPSO-KNN uses dynamic center particle swarm optimization (DCPSO) to generate SNP combinations with a fitness function designed using the KNN method and statistical verification. A total of 77 SNPs in the mitochondrial D-loop were used to detect the SNP-SNP interactions and the search ability was compared against that of other methods. The detected SNP-SNP interactions were statistically evaluated. Experimental results showed that DCPSO-KNN successfully detects SNP-SNP interactions in two-to-seven-order combinations (positive predictive value (PPV)+negative predictive value (NPV)=1.154 to 1.310; odds ratio (OR)=1.859 to 4.015; 95% confidence interval (95% CI)=1.151 to 4.265; p-value <0.001). DCPSO-KNN can improve the detection ability of SNP-SNP associations between mitochondrial D-loops and chronic dialysis diseases, thus facilitating the development of biomedical applications.

Keywords

Models, Genetic, Reproducibility of Results, Polymorphism, Single Nucleotide, Sensitivity and Specificity, Renal Dialysis, Multigene Family, Humans, Genetic Predisposition to Disease, Renal Insufficiency, Chronic, Algorithms, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!