
pmid: 28254616
Analyses of interactions between single nucleotide polymorphisms (SNPs) have reported significant associations between mitochondrial displacement loops (D-loops) and chronic dialysis diseases. However, the method used to detect potential SNP-SNP interaction still requires improvement. This study proposes an effective algorithm named dynamic center particle swarm optimization k-nearest neighbors (DCPSO-KNN) to detect the SNP-SNP interaction. DCPSO-KNN uses dynamic center particle swarm optimization (DCPSO) to generate SNP combinations with a fitness function designed using the KNN method and statistical verification. A total of 77 SNPs in the mitochondrial D-loop were used to detect the SNP-SNP interactions and the search ability was compared against that of other methods. The detected SNP-SNP interactions were statistically evaluated. Experimental results showed that DCPSO-KNN successfully detects SNP-SNP interactions in two-to-seven-order combinations (positive predictive value (PPV)+negative predictive value (NPV)=1.154 to 1.310; odds ratio (OR)=1.859 to 4.015; 95% confidence interval (95% CI)=1.151 to 4.265; p-value <0.001). DCPSO-KNN can improve the detection ability of SNP-SNP associations between mitochondrial D-loops and chronic dialysis diseases, thus facilitating the development of biomedical applications.
Models, Genetic, Reproducibility of Results, Polymorphism, Single Nucleotide, Sensitivity and Specificity, Renal Dialysis, Multigene Family, Humans, Genetic Predisposition to Disease, Renal Insufficiency, Chronic, Algorithms, Genome-Wide Association Study
Models, Genetic, Reproducibility of Results, Polymorphism, Single Nucleotide, Sensitivity and Specificity, Renal Dialysis, Multigene Family, Humans, Genetic Predisposition to Disease, Renal Insufficiency, Chronic, Algorithms, Genome-Wide Association Study
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
