Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers in Biology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers in Biology and Medicine
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic recognition of midline shift on brain CT images

Authors: Chun-Chih Liao; Furen Xiao; Jau-Min Wong; I-Jen Chiang;

Automatic recognition of midline shift on brain CT images

Abstract

Midline shift is one of the most important quantitative features clinicians use to evaluate the severity of brain compression by various pathologies. It can be recognized by modeling brain deformation according to the estimated biomechanical properties of the brain and the cerebrospinal fluid spaces. This paper proposes a novel method to identify the deformed midline according to the above hypothesis. In this model, the deformed midline is decomposed into three segments: the upper and the lower straight segments representing parts of the tough dura mater separating two brain hemispheres, and the central curved segment formed by a quadratic Bezier curve, representing the intervening soft brain tissue. The deformed midline is obtained by minimizing the summed square of the differences across all midline pixels, to simulate maximal bilateral symmetry. A genetic algorithm is applied to derive the optimal values of the control points of the Bezier curve. Our algorithm was evaluated on pathological images from 81 consecutive patients treated in a single institute over a period of one year. Our algorithm is able to recognize the deformed midlines in 65 (80%) of the patients with an accuracy of 95%, making it a useful tool for clinical decision-making.

Keywords

Adult, Aged, 80 and over, Male, Adolescent, Brain, Middle Aged, Automation, Young Adult, Humans, Female, Child, Tomography, X-Ray Computed, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!