Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ I.R. "OLYMPIAS"arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
I.R. "OLYMPIAS"
Article . 2007
Data sources: I.R. "OLYMPIAS"
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers in Biology and Medicine
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phase response characteristics of sinoatrial node cells

Authors: Tsalikakis, D. G.; Zhang, H. G.; Fotiadis, D. I.; Kremmydas, G. P.; Michalis, L. K.;

Phase response characteristics of sinoatrial node cells

Abstract

In this work, the dynamic response of the sinoatrial node (SAN), the natural pacemaker of the heart, to short external stimuli is investigated using the Zhang et al. model. The model equations are solved twice for the central cell and for the peripheral cell. A short current pulse is applied to reset the spontaneous rhythmic activity of the single sinoatrial node cell. Depending on the stimulus timing either a delay or an advance in the occurrence of next action potential is produced. This resetting behavior is quantified in terms of phase transition curves (PTCs) for short electrical current pulses of varying amplitude which span the whole period. For low stimulus amplitudes the transition from advance to delay is smooth, while at higher amplitudes abrupt changes and discontinuities are observed in PTCs. Such discontinuities reveal critical stimuli, the application of which can result in annihilation of activity in central SAN cells. The detailed analysis of the ionic mechanisms involved in its resetting behavior of sinoatrial node cell models provides new insight into the dynamics and physiology of excitation of the sinoatrial node of the heart.

Country
Greece
Keywords

sinoatrial node, oscillators, pacemaker activity, Action Potentials, heart, In Vitro Techniques, Membrane Potentials, equations, Animals, Humans, Computer Simulation, cardiac models, rhythms, three-dimensional phase transition curves, single, Sinoatrial Node, Models, Statistical, electrical-activity, Models, Cardiovascular, dynamics, Electric Stimulation, Electrophysiology, phase resetting, mathematical models, mathematical-model, regional differences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%
Green