
Computational science has seen in the last decades a spectacular rise in the scope, breadth, and depth of its efforts. Notwithstanding this prevalence and impact, it is often still performed using the renaissance model of individual artisans gathered in a workshop, under the guidance of an established practitioner. Great benefits could follow instead from adopting concepts and tools coming from computer science to manage, preserve, and share these computational efforts. We illustrate here our paradigm sustaining such vision, based around the four pillars of Automation, Data, Environment, and Sharing. We then discuss its implementation in the open-source AiiDA platform (http://www.aiida.net), that has been tuned first to the demands of computational materials science. AiiDA's design is based on directed acyclic graphs to track the provenance of data and calculations, and ensure preservation and searchability. Remote computational resources are managed transparently, and automation is coupled with data storage to ensure reproducibility. Last, complex sequences of calculations can be encoded into scientific workflows. We believe that AiiDA's design and its sharing capabilities will encourage the creation of social ecosystems to disseminate codes, data, and scientific workflows.
30 pages, 7 figures
Software Engineering (cs.SE), FOS: Computer and information sciences, Condensed Matter - Materials Science, Computer Science - Software Engineering, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics
Software Engineering (cs.SE), FOS: Computer and information sciences, Condensed Matter - Materials Science, Computer Science - Software Engineering, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 465 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
