Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational Geomet...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computational Geometry
Article . 2021 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coloring Delaunay-edges and their generalizations

Authors: Dömötör Pálvölgyi; Balázs Keszegh; Balázs Keszegh; Eyal Ackerman;

Coloring Delaunay-edges and their generalizations

Abstract

We consider geometric hypergraphs whose vertex set is a finite set of points (e.g., in the plane), and whose hyperedges are the intersections of this set with a family of geometric regions (e.g., axis-parallel rectangles). A typical coloring problem for such geometric hypergraphs asks, given an integer $k$, for the existence of an integer $m=m(k)$, such that every set of points can be $k$-colored such that every hyperedge of size at least $m$ contains points of different (or all $k$) colors. We generalize this notion by introducing coloring of \emph{$t$-subsets} of points such that every hyperedge that contains enough points contains $t$-subsets of different (or all) colors. In particular, we consider all $t$-subsets and $t$-subsets that are themselves hyperedges. The latter, with $t=2$, is equivalent to coloring the edges of the so-called \emph{Delaunay-graph}. In this paper we study colorings of Delaunay-edges with respect to halfplanes, pseudo-disks, axis-parallel and bottomless rectangles, and also discuss colorings of $t$-subsets of geometric and abstract hypergraphs, and connections between the standard coloring of vertices and coloring of $t$-subsets of vertices.

Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, QA Mathematics / matematika, FOS: Mathematics, Mathematics - Combinatorics, Computer Science - Computational Geometry, Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
bronze