Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Colloids and Surface...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Colloids and Surfaces B Biointerfaces
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of different chemical debridement agents on early cellular responses to titanium dental implants: A transcriptome-based in vitro study on peri-implant tissue regeneration

Authors: Qiang, Wang; Håvard Jostein, Haugen; Dirk, Linke; Ståle Petter, Lyngstadaas; Ólafur Eysteinn, Sigurjónsson; Qianli, Ma;

Impact of different chemical debridement agents on early cellular responses to titanium dental implants: A transcriptome-based in vitro study on peri-implant tissue regeneration

Abstract

Poor peri-implant health leads to biofilm accumulation, peri-implantitis, and bone loss. Chemical debridement may help maintain peri-implant health, but its effects on peri-implant cells remain unclear.Five cleaning agents-hydrogen peroxide (H2O2), Poloxamer, H2O2 +Poloxamer, Perisolv, and Paroex-were applied on titanium (Ti) surfaces. Mouse pre-osteoblasts (MC3T3-E1), human gingival fibroblasts (HGF), and human bone marrow stromal cells (hBMSC) were cultured on agent-treated Ti surfaces for up to 120 minutes to assess morphology, cytotoxicity, adhesion, and proliferation. RNA sequencing was performed on hBMSC.Except for Poloxamer, all treatments inhibited cellular spreading. Paroex increased cytotoxicity and inhibited proliferation. Perisolv impaired hBMSC adhesion and variably affected proliferation. H2O2, alone or with Poloxamer, elevated cytotoxicity and inhibited adhesion in hBMSCs but not MC3T3-E1 or HGF. In contrast, Poloxamer-treated Ti surfaces enhanced adhesion and proliferation across all cell types. RNA sequencing revealed that oxidant-based treatments (H2O2, H2O2 +Poloxamer, Perisolv) suppressed key genes for proliferation (HMGA2, JAG1, NOTCH1, YAP1, TBX3), anti-apoptosis (MCL1, BCL2L2), and adhesion (ITGA2, ITGB3, SPP1), while inhibiting MAPK, PI3K-Akt, and pluripotency pathways.Commercial agents like Perisolv and Paroex impair hBMSC function, with Paroex demonstrating significant cytotoxicity. H2O2 exhibits toxicity, particularly to hBMSCs. Poloxamer improves cell attachment and growth. Given these findings, careful selection of debridement agents is critical to balance cleaning efficacy and cytocompatibility. The adverse effects on hBMSCs necessitate prompt removal postapplication. Further research on biomaterials supporting tissue regeneration postdebridement is needed to restore peri-implant health.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid