Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2016
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Colloids and Surfaces B Biointerfaces
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2016
Data sources: IRIS Cnr
versions View all 4 versions
addClaim

Bio-functional surfaces for the immunocapture of AGO2-bound microRNAs

Authors: Vaghi V; Potrich C; Lunelli L; Facci P; Pasquardini L; Vanzetti L; Pederzolli C;

Bio-functional surfaces for the immunocapture of AGO2-bound microRNAs

Abstract

MicroRNAs (miRNAs) are endogenous, small (18-24nt), non-coding RNAs that regulate gene expression. Among miRNAs, those bound to the AGO2 protein are the functionally active fraction which mediates the cell regulatory processes and regulate messages exchanged by cells. Several methods have been developed to purify this fraction of microRNAs, such as immunoprecipitation and immunoprecipitation-derived techniques. However, all these techniques are generally recognized as technically complicated and time consuming. Here, a new bio-functional surface for the specific capture of AGO2-bound microRNAs is proposed. Starting from a silicon oxide surface, a protein A layer was covalently bound via epoxy chemistry to orient specific anti-AGO2 antibodies on the surface. The anti-AGO2 antibodies captured the AGO2 protein present in cell lysate and in human plasma. The AGO2-bound microRNAs were then released by enzymatic digestion and detected via RT-qPCR. Control surfaces were also prepared and tested. Every step in the preparation of the bio-functional surfaces was fully characterized from the chemical, morphological and functional point of view. The resulting bio-functional surface is able to specifically capture the AGO2-bound miRNAs from biologically-relevant samples, such as cell lysate and human plasma. These samples contain different proportions of AGO2-bound microRNAs, as reliably detected with the immunocapture method here proposed. This work opens new perspectives for a simple and faster method to isolate not only AGO2-bound microRNAs, but also the multiprotein complex containing AGO2 and miRNAs.

Country
Italy
Keywords

570, Surface analysis, Surface Properties, Antibodies, Monoclonal, MicroRNA, Silicon Dioxide, AGO2 immunocapture, 620, MicroRNAs, Plasma, MicroRNA purification, Argonaute Proteins, MCF-7 Cells, Humans, Immunoprecipitation, Staphylococcal Protein A, Bio-functional surface, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!