
pmid: 16829059
In dilute aqueous solution and at room temperature, cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) self-assembles into vesicles (self-closed bilayers), if the molar ratio of the neutral form of DHA to anionic DHA is kept between 1:1 and 1:3 (corresponding to a bulk pH between 8.5 and 9.2 for a system with 10 mM DHA). By using polycarbonate membrane extrusion, stable unilamellar DHA vesicles with an average diameter of 80 nm can be prepared at pH 8.8. Cryo-transmission electron microscopy indicates that the width of the DHA bilayers in the vesicles is clearly below twice the length of an extended DHA molecule, indicating a high conformational flexibility of DHA within the vesicle bilayer. These DHA bilayers have a similar thickness like bilayers of vesicles prepared at pH 8.5 from oleic acid (cis-9-octadecenoic acid). Using calcein as fluorescent reference compound, it is shown that water-soluble molecules can be encapsulated inside DHA vesicles which may make them interesting for medical or food applications.
Docosahexaenoic Acids, Microscopy, Electron, Transmission, Molecular Structure, Cryoelectron Microscopy, Titrimetry, Colloids, Fluoresceins
Docosahexaenoic Acids, Microscopy, Electron, Transmission, Molecular Structure, Cryoelectron Microscopy, Titrimetry, Colloids, Fluoresceins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
