
The many existent models of timing rely on vastly different mechanisms to track temporal information. Here we examine these differences, and identify coincidence detection in its most general form as a common mechanism that many apparently different timing models share, as well as a common mechanism of biological circadian, millisecond and interval timing. This view predicts that timing by coincidence detection is a ubiquitous phenomenon at many biological levels, explains the reports of biological timing in many brain areas, explains the role of neural noise at different time scales at both biological and theoretical levels, and provides cohesion within the timing field.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
