Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computer Methods and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Methods and Programs in Biomedicine
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scale-space approximated convolutional neural networks for retinal vessel segmentation

Authors: Kyoung Jin, Noh; Sang Jun, Park; Soochahn, Lee;

Scale-space approximated convolutional neural networks for retinal vessel segmentation

Abstract

Retinal fundus images are widely used to diagnose retinal diseases and can potentially be used for early diagnosis and prevention of chronic vascular diseases and diabetes. While various automatic retinal vessel segmentation methods using deep learning have been proposed, they are mostly based on common CNN structures developed for other tasks such as classification.We present a novel and simple multi-scale convolutional neural network (CNN) structure for retinal vessel segmentation. We first provide a theoretical analysis of existing multi-scale structures based on signal processing. In previous structures, multi-scale representations are achieved through downsampling by subsampling and decimation. By incorporating scale-space theory, we propose a simple yet effective multi-scale structure for CNNs using upsampling, which we term scale-space approximated CNN (SSANet). Based on further analysis of the effects of the SSA structure within a CNN, we also incorporate residual blocks, resulting in a multi-scale CNN that outperforms current state-of-the-art methods.Quantitative evaluations are presented as the area-under-curve (AUC) of the receiver operating characteristic (ROC) curve and the precision-recall curve, as well as accuracy, for four publicly available datasets, namely DRIVE, STARE, CHASE_DB1, and HRF. For the CHASE_DB1 set, the SSANet achieves state-of-the-art AUC value of 0.9916 for the ROC curve. An ablative analysis is presented to analyze the contribution of different components of the SSANet to the performance improvement.The proposed retinal SSANet achieves state-of-the-art or comparable accuracy across publicly available datasets, especially improving segmentation for thin vessels, vessel junctions, and central vessel reflexes.

Related Organizations
Keywords

Fundus Oculi, Normal Distribution, Retinal Vessels, Signal Processing, Computer-Assisted, Deep Learning, ROC Curve, Retinal Diseases, Area Under Curve, Image Processing, Computer-Assisted, Humans, False Positive Reactions, Neural Networks, Computer, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!